Haswell E5 and the iPhone6: Why would anyone ever need more?

E5

Aiphone6s expected,  Intel® announced the Haswell E5 processor family for Servers and Workstations at IDF on September 9.  Coincidentally the event was just up the valley from Apple’s event announcing the (ARM-based) iPhone 6, 6Plus, and Apple Watch.  Between the two media-saturation blitzes, one could barely find coverage of misbehaving NFL stars or Russian would-be Czars in the day’s news headlines.  While few would connect these two events in any way,  to me there is  a common thread,  best summarized by my interpretation of their messaging:  “It’s a floor wax! It’s a desert topping!  Its everything you ever wanted,  and more!”   If you’ll allow me, …

[Read more…]

Fabrics and the Software-Defined Data Center

Moonshot Cartridge

Calxeda has announced its second generation SoC, the ARM® Cortex™ A15 based EnergyCore™ ECX-2000.    This is the industry’s first ARM-based SoC enabled for full OpenStack clouds, Xen and KVM virtualization, and delivers twice the performance of the first generation ARM-based server SoCs. Calxeda will demonstrate the new platform running Ceph object storage and OpenStack  at this week’s ARM TechCon conference in Santa Clara, October 29-31.  Notably, HP has selected the ECX-2000 for an upcoming Moonshot server in early 2014. Calxeda also added a second 64-bit SoC to its roadmap that is pin-compatible with the ECX-2000,  accelerating the availability of production 64-bit Calxeda-based systems in 2014 and protecting customers investments.

While this is big news, there is a far more important story to be told.  The new ECX-2000 is just the next step on the journey to a far more efficient datacenter. This journey will fundamentally reshape the datacenter infrastructure into a fleet of compute, storage, networking, and memory resources; the so-called Software-defined Data Center.

[Read more…]

Intel announcement: Another atomic teardrop or a watershed?

Pretty obvious, and yes it is really true

Intel is widely expected to announce a new version of their ATOM SOC for microservers next week. Based on the Silvermont microarchitecture, the Avoton SOC is widely expected to repair their reputation after the disastrous Centerton product that has been largely ignored as a way-too-little-too-late response to ARM.

While we all eagerly await the final specs, and prices,  some speculate that this chip will make it harder for ARM-based server SOCs to get traction.  I think the opposite is more likely.  If this chip is really good,  and priced to sell, it means that Intel itself has capitulated to the market demands for a lower power chip designed for real workloads instead of benchmarks.  And THAT will validate everything the ARMy of SOC guys have been saying:  you don’t always NEED a Xeon behemoth, so why pay for it in terms of power, space, and $$$??  And of course, they wouldn’t do that, at the potential expense of Xeon margins, if they really thought this was less than 10% of the market, and if they didn’t feel threatened by ARM.

So, I’m rooting for Intel for a change. Validate the market,  join the party,  and may the best RACK win!  (a thinly veiled reference to the important of the fabric, which Calxeda fans may appreciate ;-)

 

Java, Fedora, and Xen Support: All on Calxeda

With the allure of a good book on the beach stealing everyone’s attention this summer, you may have missed three important developments in the Linux community to support ARM in the datacenter.  The first was the announcement that with the new Fedora 19, Fedora has released ARM and x86 support simultaneously.  This was made possible, in part, thanks to a Boston Viridis build-farm installed earlier this year.  ARM support is now available in media and installer images for TI OMAP4, nVidia Tegra 2, and Calxeda ECX-1000 (Highbank).  This represents a key milestone in providing complete Linux packages for ARM based development, appropriate for customers who roll-their-own OS from open source.  (Note that the Ubuntu community already enjoys a fully supported enterprise OS for ARM, thanks to the work of Canonical Ltd, a long-time supporter of the ARM architecture.)

Next on deck for your summer reading pleasure,  is the release  of Xen 4.3 for ARM V7 and V8 architectures by the Xen Project, enabling hypervisor support for 32- and 64-bit ARM SOCs.  Once again, this work was done on a Calxeda-based Boston Viridis system.

Finally,  today ARM and Oracle announced the next phase of their collaborative relationship to optimize Javafor ARM-based servers and embedded SOCs, extending their work to 32- and 64-bit optimization:

  • Agreement will provide ARM architecture support for key markets e.g. data centers, network infrastructure and embedded computing
  • Oracle JVM optimized further for 32-bit products and ported over and optimized for ARMv8 64-bit
  • Additional areas for co-operation include improving boot-up performancepower savings and library optimization

Note that Oracle Java SE is a fundamental technology for all of the market areas mentioned above.

Ok, back to the beach…

HostingCon 2013: InterWorx Control Panel running on EnergyCore demo video now posted

Live from HostingCon, we’ve posted a video of Brett from Interworx demoing the Interworx control panel and clustering technology on a 24 server Calxeda system. To see the cluster in action for yourself, tweet @InterWorxArm and see what the cluster has to say. We’ll keep the twitter demo running until the end of HostingCon.

Check out the demo video below:

 

HostingCon 2013: See InterWorx Control Panel running on EnergyCore at the Calxeda booth

interworxHostingCon 2013 is right around the corner, so I’d like to give everyone a preview of the work that our partner InterWorx has done to get their control panel and clustering technology running on our gear. Ever since the spike in interest from World Hosting Days back in March, we’ve been working hard to enable hosting providers to create Calxeda-based offerings. A key part of that is the hosting control panel, and we’re pleased to be working with InterWorx on creating the first control panel compatible with ARM servers. With just a little bit of elbow grease, we’ve gotten the InterWorx control panel and clustering technology to run on one of our 24-node systems. We’ll be showing a live demo at HostingCon next week, so drop by the Calxeda booth (#905) to talk to us and the InterWorx team.

Inktank and Calxeda Partner to Transform Ceph Storage Solutions

CephToday, Calxeda announced a partnership with Inktank in which we will together optimize and promote Ceph-based solutions in the market. It’s obvious why Ceph has been gaining lots of traction lately: it has been selected by Ubuntu as an official package within their distribution, and also for its compatibility with OpenStack cloud deployments. What may not be as obvious, however, is why and how Calxeda enables “microserver” designs that are a perfect fit for distributed applications like Ceph.

As you might have seen from last week’s announcement at Computex in Taipei, two of the three debuted systems are targeting the storage server markets, with a few additional designs that can’t yet be disclosed. More and more system vendors and customers are starting to realize the synergy in new “scale-out hardware” built for this new emerging trend of distributed storage software. But why?
[Read more…]

Anandtech Reviews the Calxeda ECX-1000: “Calxeda’s ECX-1000 server node is revolutionary technology”

I’d like to point everyone over to a great review of the Calxeda-powered Boston Viridis box by Anandtech that just went live, here. First of all, big thanks to Johan De Gelas over at Anandtech and Wannes De Smet at SizingServers for doing a top notch job pulling together an in-depth review of our gear as well as the team at Boston Limited for taking care of the hardware. Since we launched the ECX-1000 we’ve been beating the streets to get real results and metrics out into customers’ hands and show that the technology delivers as promised. With quotes like “Calxeda really did it”, “nothing short of remarkable” and “revolutionary technology”, we’re all excited to see these results posted on a site like Anandtech.

[Read more…]

IHS iSuppli Microserver Forecast: Mobile, cloud computing spur tripling of micro server shipments this year

Mobile, cloud computing spur tripling of micro server shipments this year

Posted on iSuppli on 08 Feb 2013 at 7:13am:

Driven by booming demand for new data center services for mobile platforms and cloud computing, shipments of micro servers are expected to more than triple this year, according to research firm IHS iSuppli.

micro-server 

 

Shipments this year of micro servers are forecast to reach 291,000 units, up 230 percent from 88,000 units in 2012. Shipments of micro servers commenced in 2011 with just 19,000 units. However, shipments by the end of 2016 will rise to some 1.2 million units.

The penetration of micro servers compared to total server shipments amounted to a negligible 0.2 percent in 2011. But by 2016, the machines will claim a penetration rate of more than 10 percent — a stunning fifty-fold jump.

 

 

Micro servers are general-purpose computers, housing single or multiple low-power microprocessors and usually consuming less than 45 watts in a single motherboard.

The machines employ shared infrastructure such as power, cooling and cabling with other similar devices, allowing for an extremely dense configuration when micro servers are cascaded together.

“Micro servers provide a solution to the challenge of increasing data-center usage driven by mobile platforms,” said Peter Lin, senior analyst for compute platforms at IHS.

“With cloud computing and data centers in high demand in order to serve more smartphones, tablets and mobile PCs online, specific aspects of server design are becoming increasingly important, including maintenance, expandability, energy efficiency and low cost. Such factors are among the advantages delivered by micro servers compared to higher-end machines like mainframes, supercomputers and enterprise servers — all of which emphasize performance and reliability instead.”

Server salad days

Micro servers are not the only type of server that will experience rapid expansion in 2013 and the years to come. Other high-growth segments of the server market are cloud servers, blade servers and virtualization servers.

The distinction of fastest-growing server segment, however, belongs solely to micro servers.

The compound annual growth rate for micro servers from 2011 to 2016 stands at a remarkable 130 percent — higher than that of the entire server market by a factor of 26. Shipments will rise by double- and even triple-digit percentages for each year during the period.

Key players stand to benefit

Given the dazzling outlook for micro servers, makers with strong product portfolios of the machines will be well-positioned during the next five years — as will their component suppliers and contract manufacturers.

A slew of hardware providers are in line to reap benefits, including microprocessor vendors like Intel, ARM and AMD; server original equipment manufacturers such as Dell and HP; and server original development manufacturers including Taiwanese firms Quanta Computer and Wistron.

Among software providers, the list of potential beneficiaries from the micro server boom extends to Microsoft, Red Hat, Citrix and Oracle. For the group of application or service providers that offer micro servers to the public, entities like Amazon, eBay, Google and Yahoo are foremost.

The most aggressive bid for the micro server space comes from Intel and ARM.

Intel first unveiled the micro server concept and reference design in 2009, ostensibly to block rival ARM from entering the field.

ARM, the leader for many years in the mobile world with smartphone and tablet chips because of the low-power design of its central processing units, has been just as eager to enter the server arena — dominated by x86 chip architecture from the likes of Intel and a third chip player, AMD.

ARM faces an uphill battle, as the majority of server software is written for x86 architecture. Shifting from x86 to ARM will also be difficult for legacy products.

ARM, however, is gaining greater support from software and OS vendors, which could potentially put pressure on Intel in the coming years.

 

Green Computing Makes a Giant Leap Forward …thanks to the iPhone?…and ARM processors!

Written by Shawn Kaplan, General Manager – Financial Services, TELX

Shawn Kaplan, TELX General Manager Financial Services

Shawn Kaplan

Advances in multi-core computing have allowed far greater compute densities such that nearly all datacenter racks run out of available power far sooner than physical space.  Traditional High Performance Computing (HPC) X86 clusters can consume upwards of 400W per rack unit (U), this means that a typical data center rack with a 5KW – 8KW circuit can be maxed out in as little as 1/4 or 1/2 of the available space.  Many of today’s forward thinking IT leaders are asking “Why can’t I have both extremely dense computing and better power efficiency?”

[Read more…]

Follow

Get every new post delivered to your Inbox.

Join 989 other followers